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Abstract. A consistent approach to the lineshape in the binary collision regime accounting for speed-
changing collisions based on a convenient memory function is proposed. The consequences of memory
effects on the spectral lineshape, through speed-dependent line broadening and line shifting mechanisms,
are studied in detail for the prototype H2-Ar system. The connection between the present memory approach
and the analytical model SC + D (“speed changing” and “dephasing” collisions) based on the hard collision
approximation is displayed.

PACS. 34.10.+x General theories and models of atomic and molecular collisions and interactions (including
statistical theories, transition state, stochastic and trajectory models, etc.) – 33.70.Jg Line and band
widths, shapes, and shifts

1 Introduction

In the impact regime, for densities significantly larger than
those relevant to the Doppler regime, experimental proof
was given [1] for an inhomogeneous broadening of the H2

vibrational Q-lines in a heavy perturber gas. A simple
hard collision model accounting for uncorrelated speed-
changing collisions (SC) and dephasing (D) ones was pro-
posed by Farrow et al. [1]. It permits a consistent descrip-
tion of the observed asymmetric features and of impor-
tant deviations versus concentration from the usual lin-
ear mixing rule for the broadening coefficient in gas mix-
tures. This model includes the collisionally induced inter-
ferences between the various speed classes, leading in this
case to a narrowing of the line with respect to a Boltz-
mann weighted sum of Lorentzian profiles corresponding
to each class. A generalization [2] of this model account-
ing for partial correlations between speed-changing and
dephasing mechanisms was successfully applied to an ex-
haustive analysis of Raman Q-lines of H2 perturbed by
various rare gases [3,4] and nitrogen [5].

These models [1,2] are based on the hard collision
(HC) approximation [6,7] assuming that each collision
thermalizes the radiator speed (i.e. the velocity modu-
lus). In other words, no memory of this speed is preserved
after each collision. The HC approximation has been ex-
tensively used [8–11] for velocity-changing (VC) collisions
in order to analyze the lineshape profiles at lower den-
sities, in the Doppler regime, by using the Rautian and
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Sobelman model [12]. Notice that, in the following, the
Doppler regime must be understood as including the ef-
fect of collisions and the collision regime, as free of Doppler
effect. The characteristic parameter of this model [12] is
the velocity-changing rate νV C which is found [9] to be
close to the dynamical friction coefficient β◦ calculated
from the mass diffusion constant Dm, as expected. Resid-
ual discrepancies between νV C and β◦ are observed [8–11]
(typically between a few percent and several ten percents).
The origin of these discrepancies was studied by May and
coworkers [13] by accounting for both collision confine-
ment narrowing and inhomogeneous broadening, and they
were attributed [13] to the width inhomogeneities due to
SC collisions. Such inhomogeneities were first introduced
by Berman [14] within the Voigt profile frame. This low
density regime will be analyzed in paper II. In order to
arrive at a clear understanding of all the mechanisms in-
volved in the spectral lineshape in the various regimes,
we will focus the present paper on the collision regime.
Therefore Doppler effects will not be considered here.

In the collision regime, the speed-changing rate νSC

for H2 in heavy perturbers [1–5] has been found to be
drastically lower than the velocity-changing one νV C (by
about one order of magnitude). This drastic change of the
characteristic rate parameter from the VC to SC collision
regime suggests that it may be necessary to account for
the specific speed-memory effects in the collision regime.
The distinction between the orientation and the modulus
(speed) of the radiator velocity in the memory process was
previously considered by Nienhuis [15].

The second important feature is to point out the dif-
ference between the hard and soft collision models [12,16],
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if we consider either the Doppler regime or the collision
one. Nelkin and Ghatak [7] have demonstrated that these
two collision models lead to close spectral distributions in
the Doppler regime. This means that, in this last regime,
the precise nature of the velocity memory kernel in the ki-
netic equation does not play a crucial role in the resulting
spectral lineshape. This is no longer the case for the colli-
sion regime. Indeed, if we assume that the speed-memory
is lost after each collision (i.e. if we take νSC = νV C),
the inhomogeneities are drastically reduced, in strong dis-
agreement with experiment. The efficiency of the inter-
ferences between the various speed classes is thus largely
overestimated (cf. Refs. [1,3–5]). In the opposite soft col-
lision limit [16], where a significant speed-change requires
a very large number of collisions, the above mentioned in-
terference mechanism disappears [17]. The absence of this
collisionally induced speed-class exchange leads [1,3,5] to
a large overestimation of both line width and asymmetry
in the case of H2 Q-lines perturbed by heavy rare gases or
N2.

The above analysis shows that the speed collision rate
νSC � νV C ≈ β◦ only accounts for the efficient colli-
sions in the speed-exchange process. In order to obtain a
unified approach for collisional, Doppler and intermediate
regimes, it is necessary to introduce a memory function
f(v′,v) depending, not only on the outgoing velocity v
(as in the HC assumption), but also on the incoming ve-
locity v′. A realistic model for such a memory function
was proposed a long time ago [18] by Keilson and Storer
(KS) to describe the relaxation of the translational veloc-
ity. Later, it was successfully employed in various other
physical problems [19,20], in particular for the pressure-
induced collapse of the rotational structure of Raman Q-
lines in gases [21,22].

The main objective of this first paper is to analyze in
detail the role of the translational speed-memory effect
on spectral lineshapes in the collision regime, through the
speed- dependence of the collisional broadening γcoll(v)
and shifting δcoll(v) coefficients [14]. Starting from the ki-
netic impact equation with the KS kernel, the expression
for the lineshape is established in Section 2. Section 3 is
devoted to a numerical study of the speed-memory effects
on the spectral distribution with application to the pro-
totype H2−Ar system. A simplified memory function is
proposed in Section 4 in order to obtain an analytical ex-
pression for the lineshape and to clarify the connection
with the well-known hard collision limit. Concluding re-
marks are given in Section 5.

2 Kinetic equation and resulting lineshape

2.1 The kinetic equation with the KS
speed-memory function

If we assume that the SC and D collisions are statistically
independent [1,12], the kinetic impact equation for the
radiating dipole characterized by speed v at time t in the
collision regime is [12,2]

∂

∂t
d(v, t) ≡

·
d(v, t)

= −νV C
[
d(v, t)−

∫ ∞
0

f(v′, v)d(v′, t)dv′
]

− [γcoll(v) + iδcoll(v)] d(v, t), (1)

where the speed-memory function f(v′, v) is the average
of the velocity-memory function f(v′,v) over all possible
orientations of v.

Following Keilson and Storer [18], we introduce
the probability per unit time that the optically active
molecule, with velocity v′, undergoes a transition to a
volume dv = v2dv dΩ about v. Within the KS model,
this probability is [18]

A(v′,v) = νV CfKSγ (v′,v)

≡ νV C(1− γ2)−3/2WB

(
v− γv′√

1− γ2

)
, (2)

where WB(...) means the Boltzmann distribution.
After averaging over the v-orientation, the KS speed-

memory function is [22,23]

fKSγ (v′, v) =

∫
fKSγ (v′,v)dΩ

= 2

(
β̃

π

)1/2
v

γv′
e−β̃(v2+γ2v′2)sh(2β̃γvv′). (3)

In equations (1) and (2), νV C is the velocity-changing col-
lision frequency (assumed [12] to be v-independent) and
γ the unique parameter characterizing the strength of in-
elastic collisions in the KS model. Moreover, (1− γ2)β̃ =
m/2kT in equation (3), where m is the mass of the ra-
diator and T the absolute temperature of the gas. For
γ = 0, the fKS0 (v′, v) memory function (Eq. (3)) is equal
to the Boltzmann distribution WB(v). In this HC limit,
the radiator speed is thermalized after each collision and
its memory is completely lost. If γ is close to 1 (i.e. for
soft collisions), the radiator speed is only slightly changed
after each collision and the outgoing value v remains cor-
related to the incoming one v′ for a time very much larger
than the time between collisions. With intermediate values
of γ, we account for physical situations where the random
process is partially correlated for the translational speed.
Our goal is to analyze the gradual transformation of an
isolated absorption, emission or scattering line profile due
to this partial correlation when γcoll and δcoll are speed-
dependent.

In order to solve equation (1) with f(v′, v) =
fKSγ (v′, v) (cf. Eq. (3)), we can use the fact that the gen-

eralized Laguerre polynomials L
1/2
n (mv2/2kT ) ≡ L

1/2
n (x)

are eigenfunctions of the integral operator [22] in this ki-
netic equation

fKSγ (x′, x) = WB(x)
∞∑
n=0

γ2nL
1/2
n (x′)L

1/2
n (x),

WB(x) =

√
xe−x

Γ (3/2)
, (4)
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·
an(t) = −νVC(1− γ2n)an(t)−

∞∑
n′=0

{[
(1 + α)−1 T

T0

]r/2
[γcoll(T0)− (γcoll)0]I

(r)
nn′(α) + (γcoll)0δnn′

+ i

[
(1 + α)−1 T

T0

]s/2
[δcoll(T0)− (δcoll)0]I

(s)
nn′(α) + i(δcoll)0δnn′

}
an′(t). (15)

where the normalized Laguerre polynomials L
1/2

n (x) are
defined in terms of the usual ones by [23]

L
1/2
n (x) = [n!Γ (3/2)/Γ (n+ 3/2)]1/2L1/2

n (x), (5)

and satisfy the orthonormalization relation∫ ∞
0

dxWB(x)L
1/2
n (x)L

1/2
n′ (x) = δnn′ . (6)

The radiating dipole may be expanded over these (nor-
malized) eigenfunctions

d(v, t) = WB(x)
∞∑
n=0

an(t)L
1/2

n (x). (7)

Taking into account the equilibrium initial condition
(d(v, 0) = WB(v)), we obtain from equations (1), (4) and
(7) for the {an(t)} coefficients

·
an = −νV C(1− γ2n)an(t)−

∞∑
n′=0

an′(t)

∫ ∞
0

dxWB(x)

× [γcoll(x) + iδcoll(x)]L
1/2
n (x)L

1/2
n′ (x).

(8)

The line profile I(ω) corresponds to the equilibrium distri-
bution in equation (7), i.e. to the a0(t) coefficient. Taking
the Laplace transform of d(t) =

∫∞
0
d(v, t)dv,

d(ω̃) =

∫ ∞
0

dteiω̃td(t), (9)

the line profile I(ω) is defined by

I(ω) = π−1 Re{d(ω̃)} = π−1 Re{a0(ω̃)}. (10)

Notice that in equations (9) and (10), ω̃ means the de-
tuned frequency counted from the rovibrational frequency
ω0 of the isolated optically active molecule, ω̃ = ω − ω0.

2.2 Line profile for speed-dependent γcoll and δcoll

As a first step, we will assume that the dependence of
the collisional parameters γcoll and δcoll in equation (8)
has the usual simple form γcoll ∝ vrrel and δcoll ∝ vsrel
with respect to the relative speed vrel between radiator
and perturber. This assumption is useful and clarifies the
presentation. After a Boltzmann average over vrel for a

given v value, the resulting radiator speed-dependence of
collisional line broadening and line shift is [24,25]

γcoll(x, T ) =

[
(1 + α)−1 T

T0

]r/2
[γcoll(T0)− (γcoll)0]

×M

(
−
r

2
,

3

2
;−αx

)
+ (γcoll)0, (11)

and

δcoll(x, T ) =

[
(1 + α)−1 T

T0

]s/2 [
δcoll(T0)− (δcoll)0

]
×M

(
−
s

2
,
3

2
;−αx

)
+ (δcoll)0,

(12)

where α = mp/m (mp being the mass perturber), T0 is
a reference temperature, M (−s/2, 3/2;−αx) is the con-
fluent hypergeometric function [23], and the x-averaged
collisional parameters γcoll(T ) and δcoll(T ) are defined by

γcoll(T ) =

∫ ∞
0

dxWB(x)γcoll(x, T )

=

(
T

T0

)r/2
[γcoll(T0)− (γcoll)0] + (γcoll)0,

δcoll(T ) =

∫ ∞
0

dxWB(x)δcoll(x, T )

=

(
T

T0

)s/2 [
δcoll(T0)− (δcoll)0

]
+ (δcoll)0, (13)

which corresponds to equations (16) and (18) of refer-
ence [3], but with an homogeneous physical redefinition
of the coefficients. Introducing the following symmetric
matrix elements

I
(p)
nn′(α) =

∫ ∞
0

dxWB(x)M(−
p

2
,

3

2
;−αx)L

1/2

n (x)L
1/2

n′ (x),

p = r or s,
(14)

equation (8) becomes

See equation (15) above
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For the particular case p = 2, the matrix defined by equa-
tion (14) takes the exact tridiagonal form [22,23]

I
(2)
nn′(α) = δn′,n +

2

3
α

{(
2n+

3

2

)
δn′n

−
√
n(n+ 1/2)δn′,n−1

−

√
(n+ 1)

(
n+

3

2

)
δn′,n+1

}
. (16)

Of course, a more general dependence of γcoll and δcoll vs.
vrel (as, for instance, a linear combination [1,3] of power
laws or numerical results from ab initio calculations) may
be easily introduced. The structure of equation (15) being
preserved, this equation will be rewritten in terms of a
generalized Γnn′ matrix as

·
an(t) = −νV C(1− γ2n)an(t)−

∞∑
n′=0

Γnn′an(t)

≡ −
∞∑
n′=0

Wnn′an′(t). (17)

The Laplace transform (Eq. (9)) of this last equation is

(−iω̃ +W )a(ω̃) = 10, (18)

where the matrix W is defined through equation (17) and
the vector 10 has the components δn,0 (notice that, from
Eq. (7), an(t = 0) = δn,0). If S means the matrix diago-
nalizing W , the resulting spectral profile is (cf. Eq. (10))

I(ω) = π−1Re{a0(ω̃)} = π−1Re

{∑
k

S0k(S−1)0k

−iω̃ +Dk

}
,

(19)

where the diagonal D matrix is given by D = S−1WS.
Equation (19) will be used in the following to numer-

ically study the role of the Keilson-Storer speed-memory
function (Eq. (3)) on the spectral distribution of a given
rovibrational line for gas mixtures. This requires the gen-
eralization of the kinetic equation (1), explicitly written
for pure gases, to this physical situation. Due to its marko-
vian character, the generalization of equation (1) to a mix-
ture of two species (a) and (b) with respective concentra-
tions c and (1− c) is

·
d(v, t) = −

{
c
[
γ

(a)
coll(v) + iδ

(a)
coll(v)

]
+ (1− c)

[
γ

(b)
coll(v) + iδ

(b)
coll(v)

]}
d(v, t)

− cν(a)

[
d(v, t)−

∫ ∞
0

dv′f (a)(v′, v)d(v′, t)

]
− (1− c)ν(b)

[
d(v, t) −

∫ ∞
0

dv′f (b)(v′, v)d(v′, t)

]
,

(20)

where the exponent indexes (a) and (b) are relative to
collisional pairs (a)−(a) and (a)−(b) respectively. Intro-
ducing the usual linear combinations

γcoll(v) = cγ
(a)
coll(v) + (1− c)γ(b)

coll(v),

δcoll(v) = cδ
(a)
coll(v) + (1− c)δ(b)

coll(v),

ν = cν(a) + (1− c)ν(b), (21)

equation (20) leads straightforwardly to the same formal
kinetic equation as equation (1) with the following defini-
tion for the speed-memory function of the gas mixture

f(v′, v) = ν−1[cν(a)f (a)(v′, v) + (1− c)ν(b)f (b)(v′, v)].
(22)

By using this new definition (22) for the speed-memory
function, all the above mathematical procedures for the
calculation of the spectral lineshape, through equation
(19), remain unchanged for gas mixtures.

3 Numerical study of speed memory effects
on lineshape

The numerical calculation of the Q-line profiles for the
H2-Ar gas mixture from the kinetic equation (20) with
the KS kernel (Eq. (3)) depends upon the parameters
γ(H2) and γ(Ar). These two parameters characterize the
speed-memory functions f (H2)(v′, v) and f (Ar)(v′, v) re-
spectively (cf. Eqs. (3) and (22)). Since no inhomoge-
neous effect was observed [3,26] in pure H2, the strong
collision model can be used [1–3] for the colliding H2-H2

pairs, so that γ(H2) = 0 and f (H2)(v′, v) = WB(v). The
calculation of I(ω) from equation (19) requires the de-
termination of the eigenvalues Dk and of the eigenvector
components S0k tied to the W matrix defined through
equations (15) and (17). This determination involves cal-

culating the matrices I
(p)
nn′(α) (Eq. (14)) for the perti-

nent α values (i.e. α(H2) = 1, α(Ar) = 19.82) and for
r = 0 and s = 1 (cf. Eqs. (11) and (12)) since only the
v-dependence of the collisional shift, exhibiting a linear
variation with

√
T , has to be considered at room tem-

perature (cf. Refs. [3,5,25]). Furthermore, the W matrix
has been truncated at n = 40 (cf. Eq. (17)) in order to
ensure convergence up to γ(Ar) = 0.95. Notice that, for
γ = 1, the analytical asymptotic limit δ(v′ − v) for the
KS memory function (Eq. (3)) can be used to easily per-
form the numerical calculation. All the numerical values
for the needed parameters have been taken from refer-

ence [3] (
(
γ

(H2)
coll

)
0

= γ
(H2)
coll (295 K) = 0.87 mK/amagat,(

γ
(Ar)
coll

)
0

= γ
(Ar)
coll (295 K) = 2.35 mK/amagat,

(
δ

(H2)

coll

)
0

=

−17.41 mK/amagat,
(
δ

(Ar)

coll

)
0

= −26.11 mK/amagat,

δ
(H2)

coll (295 K) = −3.32 mK/amagat, δ
(Ar)

coll (295 K) =
−11.82 mK/amagat, ν(H2) = 47 mK/amagat and ν(Ar) =
92 mK/amagat, where 1 mK=10−3 cm−1 and the amagat
is the density unit).
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Fig. 1. (a) Isotropic RamanQ(1)-line profile I(ω̃) (in arbitrary
units) for H2 infinitely diluted in argon (c→ 0) at T = 295 K
calculated from the kinetic equation (20) with the KS memory
function (Eq. (3)); γ(Ar) = 0 (———); γ(Ar) = 0.8 (· · · · · · · · · );
γ(Ar) = 0.95 (— — —); γ(Ar) = 1 (— ·· — ·· —). (b) Same
as Figure 1a but for the LKS memory function (Eq. (24)). In
addition, the case γ̃(Ar) = 0.88 (—– —– —–), corresponding
to the best fit [3] with experimental data is also given. (Notice
that γ̃ = 1−x (cf. Eq. (28)) where x is the ratio of SC collisions
in the SC + D hard collision model; cf. Ref. [2]).

The resulting effect of the KS speed-memory function
on the lineshape is illustrated in Figure 1a for the Q(1)-line
of H2 at very high dilution in argon for T = 295 K. Follow-
ing the values of the parameter γ(Ar) (cf. Eq. (3)), the line-
shape varies from a strongly inhomogeneous asymmetric
profile (for γ = 1) to a quasi-homogeneous symmetric one
(for γ = 0). The interpretation of this behavior is made
easier by considering the two limits γ = 1 and γ = 0. In
the soft (γ = 1) collision limit, the speed-memory is kept
after an infinite number of collisions and speed-class ex-
changes do not take place [17]. In the hard collision limit
(γ = 0), the speed-class exchanges have the maximum effi-
ciency since the speed-memory is lost after each collision,
resulting in a coalesced spectral lineshape. For interme-
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Fig. 2. (a) Isotropic Raman Q(1)-line width Γ (FWHM) for
H2−Ar gas mixtures vs. argon concentration at T = 295 K
calculated from the kinetic equation (20) with the KS memory
function (Eq. (3)); γ(Ar) = 0 (———); γ(Ar) = 0.8 (· · · · · · · · · );
γ(Ar) = 0.95 (— — —); γ(Ar) = 1 (— ·· — ·· —). The lowest
curve (—— ——) corresponds to the usual linear variation (v-
averaged Eq. (21); cf. Eq. (13)). (b) Same as Figure 2a but for
the LKS memory function (Eq. (24)) including, in addition,
the case γ̃(Ar) = 0.88 (—– —– —–) (cf. Fig. 1b caption).

diate values of γ between 1 and 0, partial correlation of
speed leads to increasing speed-class exchanges and, thus,
to an increasing coalescence. It is worth noting that these
exchanges are efficient for a large range of γ values since
the inhomogeneous effects only appear (cf. Fig. 1a) for a
restricted range of γ(0.8 . γ ≤ 1).

The variations of the three main characteristics of the
spectral profile (i.e. the full width Γ , the shift ∆ and the
asymmetry A) vs. the concentration of the mixture for
various values of γ(Ar) are shown in Figures 2a, 3a and
4a. In Figure 2a, a linear behavior of Γ vs. (1− c) Argon
mole fraction for γ(Ar) = 0, is obtained. It slightly differs

from the usual linear law (γcoll = cγ
(H2)
coll + (1 − c)γ

(Ar)
coll ).

The origin of this difference was explained [2,3] by the
fact that in the VC + D hard collision model the col-
lapse of the various speed classes can not be complete, in
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Fig. 3. (a) Isotropic Raman Q(1)-line shift ∆ (ω = ω0 + ∆)
for H2−Ar gas mixtures vs. argon concentration at T = 295 K
calculated from the kinetic equation (20) with the KS memory
function (Eq. (3)); γ(Ar) = 0 (———); γ(Ar) = 0.8 (· · · · · · · · · );
γ(Ar) = 0.95 (— — —); γ(Ar) = 1 (— ·· — ·· —). Notice that
the γ = 0 curve coincides with the usual linear variation (v-
averaged Eq. (21)). (b) Same as Figure 3a but for the LKS
memory function (Eq. (24)) including, in addition, the case
γ̃(Ar) = 0.88 (—– —– —–) (cf. Fig. 1b).

contrast with the partially correlated VCD +D hard colli-
sion model. This results in a weak residual inhomogeneous
contribution, less than one mK/amagat. The second im-
portant feature in Figure 2a, is the weak inhomogeneous
broadening for c > 0.5, whatever the KS memory parame-
ter γ(Ar). This inhomogeneous broadening is only efficient
for weak H2-concentration and for a γ(Ar) parameter close
to one (typically between 0.8 and 1) where a drastic non-
linear increase of Γ is observed. For the shift ∆ (Fig. 3a),
the role of the concentration is also important and the
inhomogeneous shifting effect is less important than for
the broadening. The residual inhomogeneity between the
linear variation for γ(Ar) = 0 and the usual linear law

(δcoll = cδ
(H2)
coll + (1− c)δ(Ar)

coll ) is negligible.

For the asymmetry A of the line, which is the third sig-
nature of the speed-changing collision effect, the remarks
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Fig. 4. (a) Isotropic Raman Q(1)-line asymmetry A = [νHF +
νLF − 2νMax]/Γ (where νHF and νLF means the high and low
frequencies at half maximum respectively, νMax is the maxi-
mum frequency and Γ the FWHM) for H2 infinitely diluted in
argon (c→ 0) at T = 295 K calculated from the kinetic equa-
tion (20) with the KS memory function (Eq. (3)); γ(Ar) = 0
(———); γ(Ar) = 0.8 (· · · · · · · · · ); γ(Ar) = 0.95 (— — —);
γ(Ar) = 1 (— ·· — ·· —) (the γ(Ar) = 0 curve is very close to
zero and almost superposed to the argon-concentration axis).
(b) Same as Figure 4a but for the KS memory function (Eq.
(24)) including, in addition, the case γ(Ar) = 0.88 (—– —–
—–) (cf. Fig. 1b).

concerning the role of the concentration and γ(Ar) are also
relevant. The non-linear behavior of A vs. γ(Ar) is even
more pronounced than for Γ .

As a whole, these three Figures 2a, 3a and 4a show
the crucial role played by the weak collisions in the result-
ing inhomogeneous features of the line profile. This point
will be used in the following section (Sect. 4) through an
alternative analytical model based on a linearized Keilson-
Storer memory function.
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4 An analytical expression for the lineshape
from a simplified model
for the speed-memory function

The numerical solution of the impact kinetic equation (1)
using the speed-memory Keilson-Storer model [18] has al-
lowed us to get a clear understanding of the basic mecha-
nism underlying the speed-changing collisional effects on
the spectral lineshape. Particular interest lies in an an-
alytical expression for the spectral lineshape for practi-
cal applications in atmospheric sciences or in diagnostics
of combustion media. Furthermore such an analytical ex-
pression should permit the establishment of a connection
between the present approach using the KS memory func-
tion and the useful and efficient hard collision model [1,2].
For this reason, we introduce now an alternative realistic
speed-memory function.

The KS function (Eq. (2)) gives the simple analytical
limits for γ = 0 and γ = 1,

fKS0 (v′,v) = WB(v), fKS1 (v′,v) = δ(v′ − v). (23)

Therefore, after averaging over the v-orientation, a model
for f(v′, v), still satisfying detailed balance, may be ob-
tained by using a linearized KS (LKS) model

f(v′, v) = (1− γ̃)WB(v) + γ̃δ(v′ − v), (24)

where γ̃ is the fraction of soft collisions in an ensemble of
collisions including only hard (γ = 0) and soft (γ = 1) col-
lisions. In such an LKS model, the γ̃-weighted statistical
mixing of the two types of collisions (24) is substituted for
the KS memory function (3). Let us recall that this last
function is tied to a given colliding pair accounting for
all possible statistical behaviors through the KS parame-
ter γ. Substituting equation (24) in equation (1) gives the
kinetic equation

·
d(v, t) = −[γcoll(v) + iδcoll(v)]d(v, t)

− (1− γ̃)νV C
[
d(v, t)−WB(v)

∫ ∞
0

dv′d(v′, t)

]
.

(25)

The Laplace transform of this equation leads straightfor-
wardly from equation (10) to the following expression for
the spectral lineshape for the case of statistical indepen-
dent VC and D collisions (VC+D)

I(ω̃) =
ϕWSL

(1−γ̃)νV C (ω̃)

1− (1− γ̃)νV CϕWSL
(1−γ̃)νV C (ω̃)

, (26)

where the Weighted Sum of Lorentzian (WSL) function is
defined by

ϕWSL
ν (ω̃) =

∫ ∞
0

dv
WB(v)

ν + γ(v)− i[ω̃ − δ(v)]
· (27)

Equation (26) is formally identical to the SC+D hard col-
lision model [1,2] through the following correspondence
between νSC and νV C ,

νSC = (1− γ̃)νV C . (28)

This relation shows that the connection between the
velocity-changing frequency νV C used to treat the colli-
sional (HC) effects in the Doppler regime [12] and the
speed-changing frequency νSC introduced in the colli-
sional one [1,2], is the direct consequence of the speed-
memory effect. Within the frame of the present LKS model
(Eq. (24)), this last effect results in the phenomenological
(1− γ̃) factor in equation (28).

It is interesting to analyze the lineshape behavior
within the LKS frame (or equivalently for the SC+D (HC)
model of Ref. [1] through Eq. (28)). Figures 1b to 4b dis-
play the resulting lineshape features for the same exam-
ple used in the above analysis of the KS memory effects.
This permits a direct comparison between the two types
of memory functions (KS and LKS). Figure 1b shows that
the behavior of the Q(1)-line profile for H2 at very low
dilution in Argon for T = 295 K is close to that obtained
with the KS model (cf. Fig. 1a). A more detailed analysis,
through the three characteristic parameters Γ , ∆ and A
(Figs. 2b to 4b) confirms this statement. Of course, the
resulting profiles for the two different memory functions
(KS and LKS) present significant numerical discrepancies
but all the above general comments concerning Figures 2a
to 4a remain relevant.

Let us recall that the profiles obtained from the solu-
tion (26) of the kinetic equation (25) with the LKS mem-
ory function (24) are identical to that obtained from the
SC + D model [1] based on the hard collision approxi-
mation (i.e. without memory process). In this last model,
the memory effect is in fact accounted for through the
phenomenological νSC parameter (cf. Eq. (28)).

5 Conclusion

A kinetic model based on the Keilson-Storer memory func-
tion [18] has been used to analyze the influence of the
speed-changing collisions on spectral lineshapes. The pa-
rameter γ characterizing the KS memory function has
been shown to play a crucial role through the speed-class
exchanges. These exchanges strongly modify the inhomo-
geneous distribution resulting from the speed-dependence
of the broadening and shifting parameters.

The numerical solution of the kinetic equation for VC
+ D collisions with the KS kernel leads to line profiles
lying between a weighted sum of Lorentzian inhomoge-
neous asymmetric profiles (for soft collisions (γ = 1))
and a quasi-homogeneous symmetric profile (for hard col-
lisions (γ = 0)). The collisionally induced speed-class ex-
changes partially cancel this inhomogeneous distribution.
The calculated profiles present the expected experimental
features, i.e. a non-linear dependence of the line broaden-
ing and of the line shifting parameters on perturber con-
centration, as well as an asymmetry depending on this
concentration.

An alternative linearized Keilson-Storer (LKS) model
for the memory function has allowed us to deduce an an-
alytical expression for the lineshape accounting for the
speed- memory effects. This expression is formally iden-
tical to that previously obtained [1] in the hard collision
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approximation and successfully used to quantitatively an-
alyze the observed spectral features in H2-Ar mixtures
in a wide temperature range. Their identification leads
to a relation between the velocity-changing collision fre-
quency νV C and the speed-changing one νSC through a
parameter. This parameter is the fraction of soft (γ = 1)
collisions in the simplified LKS memory function model,
which only accounts for two types (hard and soft) of col-
lisions. This fully clarifies the meaning of νSC in the VC
+ D (HC) model. This collision speed-changing rate νSC

phenomenologically accounts for the speed-memory effect.
Furthermore, this relation between νV C and νSC es-

tablishes a bridge between two distinct approaches, that
of the Dicke narrowing , through the velocity-changing
collisions, in the Doppler regime (low density), and that
of inhomogeneous effects though the speed- dependence
of the broadening and shifting parameters in the collision
regime (high density). In the present paper (I), only this
last regime has been considered for the sake of clarity.
The introduction of the Doppler contribution in the ki-
netic model used here and its exact numerical resolution
with the 3D Keilson-Storer (instead of 1D as used here)
memory function [18] will be considered in the next paper
(II).
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